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Représentation graphique

f [n] H(z)

4

g[n] = (h ∗ f)[n]

G(z) = H(z)F (z)

z−1f [n] f [n− 1]

Exemple: opérateur de décalage or retard ("Shift") S : f �→ f [· − 1]

Un système LID agit à travers une convolution avec sa réponse impulsionnelle h[n], donc par une

multiplication dans le domain de la transformée en z.

H(z) =
∑
n∈Z

h[n]z−n est appelée fonction de transfert du système.
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Pôles et zéros

5

Exemple
Si H(z) = A(z)

B(z) où A(z) et B(z) sont des polynômes premiers entre eux, alors

les zéros de H(z) sont ceux de A(z)

les pôles de H(z) sont les zéros de B(z)

Soit une fonction de transfert H(z). On dit que le nombre complexe z0 est

un zéro de H(z) is H(z0) = 0

un pôle de H(z) is
1

H(z0)
= 0

Plus généralement:

z0 est un zéro multiple d’ordre N is
dnH

dzn
(z0) = 0 pour tout n = 0, 1, . . . (N − 1)

z0 est un pôle multiple d’ordre N is
dn(1/H)

dzn
(z0) = 0 pour tout n = 0, 1, . . . (N − 1)
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Support de la réponse impulsionnelle

Dans tous les autres cas, le système LID est à réponse impulsionnelle infinie
(RII). En pratique, dès que         a des pôles ou des régions de discontinuité, 
alors le système LID est nécessairement RII.

H(z)

6

Avantage: implémentation à l'aide d'un nombre fini de décalages  

→système réalisable. 

Un système LID est à réponse impulsionnelle finie (RIF) ssi il existe n0 ∈ Z

tel que

H(z) = z−n0P (z−1) où P (x) est un polynôme (de degré fini)

En effet: H(z) =
n1∑

n=n0

h[n]z−n = z−n0

n1−n0∑
m=0

h[m]xm

︸ ︷︷ ︸
P (x)

avec x = z−1 m = n − n0
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Causalité et stabilité
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H(z) analytique dans une couronne contenant le cercle unité ⇒ h ∈ �1(Z).

Ainsi, causalité + (ρ < 1) impliquent stabilité (BIBO et de composition).

z ∈ C

ρ
RO

C |z| = 1

Système LID causal ⇔ H(z) =
∞∑

n=0

h[n]z−n: série entière en puissances de z−1

⇔ H(z−1) =
∞∑

n=0

h[n]zn: série entière en puissances de z (Taylor)

Pour qu’une telle série soit bien défini, il suffit qu’il existe ρ tel que H(z)

soit analytique (c-à-d uniformément convergent) dans {z ∈ C : |z| > ρ}
et incluant |z| = ∞.

Exemple: H(z) = 1

1− 1
2 z

−1
est la transformée en z d’un système LID causal car

H(z) est analytique pour ROC = {|z| > 1
2} incluant |z| = ∞; elle est également

stable puisque ρ < 1.
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Filtres réels
Un filtre dont la réponse impulsionnelle est réelle vérifie la propriété de conjugaison:

8

filtre réel filtre complexe filtre réel

x
x

x

x
x

x

x

x
x

x

zéro

pole

z ∈ C z ∈ C z ∈ C

Im(z)

Re(z) Re(z) Re(z)

Im(z) Im(z)

∀z ∈ C, H(z)∗ =
∑
n∈Z

h∗[n](z−n)∗ = H(z∗)

En conséquence

si z0 est un zéro de H(z) alors z∗0 est aussi un zéro de H(z)

si zp est un pôle de H(z) alors z∗p est aussi un pôle de H(z)

En particulier, les pôles et zéros non réels de H(z) sont en nombre pair, positionnés

symétriquement par rapport à l’axe réel.

zn = |z|nejωn ⇒ (zn)∗ = (z∗)n
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9.2 ÉQUATIONS AUX DIFFÉRENCES

◼Des dérivées aux différences

◼Rappel sur les opérateurs

◼Résolution en appliquant l’opérateur inverse

◼Méthode de la transformée en z
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Des dérivées aux différences

on montre que les systèmes LIT différentiels peuvent se transposer 
en systèmes LID aux différences sous la forme

LIDf [n] g[n]

aNg[n− N ] + aN−1g[n− N + 1] + · · · + a0g[n] = bMf [n− M ] + · · · + b0f [n]

10

Ou encore, sous forme convolutive

(a ∗ g)[n] = (b ∗ f)[n] avec


a[n] =

N∑
k=0

akδ[n− k]

b[n] =
M∑

k=0

bkδ[n− k]

À l’aide d’approximations en puissances de T (pas d’échantillonnage)(
δ(t) − δ(t− T )

)︸ ︷︷ ︸
système discret

∗f(t) = f(t) − f(t− T )

∼= T · Df(t) − T 2

2!
D2f(t) + · · ·
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Rappel sur les opérateurs
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S−1
h : f �→

∑
k∈Z

hinv[k]f [· − k]

Sh : f �→
∑
k∈Z

h[k]f [· − k]

Equivalence opérateur LID / réponse impulsionnelle h[·]
Sh =

∑
k∈Z

h[k]Sk

Inverse de convolution BIBO stable

Il existe hinv ∈ �1(Z) (unique) t.q. (hinv ∗ h)[n] = δ[n]

⇔ S−1
h = Shinv

: �∞(Z) → �∞(Z)

←→ Hinv(z) =
1

H(z)
=

∑
k∈Z

hinv[k]z
−k

←→ H(z) =
∑
k∈Z

h[k]z−k
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Préparation: inverse du 1er ordre
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Critère de stabilité: (r0)n u[n] ∈ �1(Z) ⇔ |r0| < 1

(exponentielle causale décroissante)

Vérification:
(
h0,inv ∗ (δ[·]− r0δ[· − 1])

)
[n] = (r0)

n u[n]− r0(r0)
n−1 u[n− 1] = δ[n]

(I− r0S)
−1 : f �→

∞∑
k=0

(r0)
kf [· − k] ←→ 1

1− r0z−1
=

∞∑
k=0

(r0)
kz−k

←→ H0(z) = 1− r0z
−1

Inverse de convolution

h0,inv[n] = (r0)
n u[n]

Opérateur: Sh0 = (I− r0S) avec r0 ∈ C, |r0| < 1

Réponse impulsionnelle: h0[·] = δ[·]− r0δ[· − 1]
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Résolution des équations aux différences 
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Problème: étant donnés les échantillons d’entrée f [n], trouver les échantillons de

sortie g[n] qui satisfont l’équation aux différences

(a ∗ g)[n] = (b ∗ f)[n] ⇔ Sa{g} = Sb{f}

= S−1
a {b ∗ f} + ghomogène

Trois étapes

1. Déterminer la réponse impulsionnnelle de l’opérateur inverse S−1
a : f �→ ainv ∗ f

2. Déterminer la solution particulière à Sa{g}[n] = (b ∗ f)[n]:
gparticulière[n] = S−1

a {b ∗ f}[n] = (ainv ∗ b ∗ f)[n]

3. Déterminer les solutions homogènes (a ∗ ghomogène)[n] = 0

ghomogène ∈ Ker(Sa) = {g[·] : Sa{g} = 0}: noyau de Sa avec Ker(Sa) ∩ �∞(Z) = {0}

Hypothèses: Sa est injectif sur �∞(Z) et, donc, inversible; Sb est BIBO stable et f ∈ �∞(Z).

Solution: g[n] est la somme d’une solution particulière et d’une solution (dite “ho-

mogène”) pour une entrée nulle

g = gparticulière + ghomogène
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Détermination de l’opérateur inverse
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Soit Sa =
N∑

k=0

a[k]Sk : f �→ a ∗ f .

On souhaite trouver ainv ∈ �1(Z) t.q. (ainv ∗ a)[n] = δ[n]

qui définit l’opérateur inverse: S−1
a = Sainv : f �→ ainv ∗ f

⇔ Sa = a[0] (I− r1S)(I− r2S) · · · (I− rNS)

Factorisation du polynôme caractéristique

A(z) =

N∑
k=0

a[k]z−k = z−Na[0]

N∏
k=1

(z − rk) = a[0]

N∏
k=1

(1− rkz
−1)

Forme factorisée de l’inverse de convolution

S−1
a =

1

a[0]
(I− rNS)−1 · · · (I− r2S)

−1(I− r1S)
−1

Condition de stabilité BIBO: rk ∈ C, |rk| �= 1, (k = 1, · · · , N)

r1, r2, . . . , rN : racines de A(z)
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Calcul de la solution particulière
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=
1

a[0]
(hN ∗ · · · ∗ h2 ∗ h1)[n]

où hk[n] = (I− rkS)
−1{δ}[n] = (rk)

n u[n] si |rn| < 1

Ainv(z) =
1

A(z)
=

1

a[0]

N∏
k=1

1

1− rkz−1

H(z) =
B(z)

A(z)
=

1

a[0]

(
N∏

k=1

1

1− rkz−1

)
B(z)

�

Réponse impulsionnelle de l’inverse de convolution

ainv[n] = S−1
a {δ}[n] = 1

a[0]
(I− rNS)−1 · · · (I− r2S)

−1(I− r1S)
−1{δ}[n]

Calcul final de la réponse particulière: g[n] = S−1
a {b ∗ f}[n] = (h ∗ f)[n]

Réponse impulsionnelle globale: h[n] = (ainv ∗ b)[n] = 1
a[0] (hN ∗ · · · ∗ h2 ∗ h1 ∗ b)[n]
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Solutions homogènes (pour une entrée nulle)

Il s'agit d'une équation de récurrence d'ordre N  dont les  N  solutions sont des
exponentielles (éventuellement multipliées par des polynômes).

16

De façon générale, si l’on construit et factorise le polynôme caractéristique

A(z) = a0 + a1z
−1 + · · ·+ aNz−N = z−N (a0z

N + a1z
N−1 + · · ·+ aN )

= a0
(
1− r1z

−1
)(
1− r2z

−1
) · · · (1− rNz−1

)

Remarque: si les racines sont multiples, alors la solution générale prend la forme

g0[n] = Q1(n) · (r1)n +Q2(n) · (r2)n + · · ·Qd(n) · (rd)n

r1, r2, . . . , rN : racines de A(z)

alors la solution générale de l’équation homogène est donnée par

g0[n] = C1(r1)
n + C2(r2)

n + · · ·+ CN (rN )n avec C1, . . . , CN ∈ R (constantes)

d = nombre de racines distinctes

m1,m2, . . . ,md = multiplicité de la racine r1, r2, . . . , rd

Q1(x), Q2(x) . . . Qd(x) = polynômes de degré m1 − 1,m2 − 1, . . . ,md − 1

On souhaite trouver les signaux discrets g0[n] vérifiant, pour tout n entier

a0g0[n] + a1g0[n− 1] + · · ·+ aNg0[n−N ] = 0
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Cette relation est vraie pour toutes les racines de A(z) et, par linéarité, pour toute com-
binaison linéaire des racines de A(z)

Remarques

Le polynôme caractéristique A(z) est la transformée en z de la séquence a[n].

La déterminations des constantes C1, . . . , CN requiert N conditions initiales.

Hypothèse de stabilité sous-jacente: |rk| �= 1, ∀k ⇔ ghomogène /∈ �∞(Z)

Vérification: Supposons que rk ∈ C soit racine de A(z) =
N∑

m=0

amz−m.

A(rk) = 0, d’où (rk)
nA(rk) = 0 pour tout n et on a

0 = (rk)
nA(rk) = (rk)

n
N∑

m=0

am(rk)
−m =

N∑
m=0

am(rk)
n−m

= (a ∗ g0)[n] où g0[n] = (rk)
n
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Résolution d’une équation aux différences

Mise en 
équation

Racines du 
polynôme 

caractéristique

Conditions 
initiales

Solution 
générale

Inverse de 
convolution

Réponse 
impulsionnelle  

globale

18

⇔ (a ∗ gout)[n] = (b ∗ fin)[n]

Solution générale: gout[n] = (h ∗ fin)[n]

où h[n] = (ainv ∗ b)[n]

+ ghomogène[n]

et (a ∗ ghomogène)[n] = 0

ainv hr1, . . . , rN

A(z) 1

A(z)

N∑
k=0

a[k]gout[n− k] =
M∑

m=0

b[m]fin[n−m]
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Exemple d’application

19

Un zoologue élève une espèce animale rare pour étudier son comportement social.

À la période n, son élevage est constitué de jeunes en nombre g1[n], incapables de

se reproduire, ainsi que d’adultes en nombre g2[n]. Les jeunes atteignent la puberté

au bout d’une période. Par ailleurs, ce zoologue régule son élevage en y apportant

(ou en y enlevant) des nouveau-nés en nombre f [n].

Les jeunes ont un taux de mortalité assez élevé: 50%. Les vieux résistent un peu

mieux: 30% de taux de mortalité sur une période. Enfin, les adultes se reproduisent

au taux de 47.5% sur une période.
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Jeunes

Adultes

Racines du 
polynôme 

caractéristique

Conditions 
initiales

Solution 
générale

Inverse de 
convolution

Réponse 
impulsionnelle

Mise en 
équation
Mise en 
équation

En remplaçant la première équation dans la seconde on obtient

−0.2375 · g2[n − 2] − 0.7 · g2[n − 1] + g2[n] = 0.5 · f [n − 1]

Il s'agit d'une équation aux différences dont l'entrée est        et la sortie         .f [n] g2[n]

20


g1[n] = 0.475 · g2[n− 1]︸ ︷︷ ︸

reproduction des adultes

+ f [n]︸︷︷︸
apport du zoologue

g2[n] = (1− 0.3) · g2[n− 1] + (1− 0.5) · g1[n− 1]︸ ︷︷ ︸
“survivants” de la période n−1
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Mise en 
équation

Racines du 
polynôme 

caractéristique

Conditions 
initiales

Solution 
générale

Inverse de 
convolution

Réponse 
impulsionnelle

Racines du 
polynôme 

caractéristique

Equation aux différences: −0.2375 · g2[n − 2] − 0.7 · g2[n − 1] + g2[n]︸ ︷︷ ︸ = 0.5 · f [n − 1]

21

Polynôme caractéristique: A(z) = −0.2375 · z−2 − 0.7 · z−1 + 1

Racines de A(z) : {r1, r2} = {0.95,−0.25}
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Mise en 
équation

Racines du 
polynôme 

caractéristique

Conditions 
initiales

Solution 
générale

Fonction de 
Green

Réponse 
impulsionnelle

Inverse de 
convolution

Racines du polynôme caractéristique:                    et  r2 = −0.25r1 = 0.95

22

Factorisation: Sa = (I − r1S)(I − r2S)

ainv[n] = (h1 ∗ h2)[n]

=
(

r1
r1−r2

(r1)n − r2
r1−r2

(r2)n
)

u[n] =
(

95
120 (0.95)n + 25

120 (−0.25)n
)

u[n]

Réponses impulsionnelles intermédiaires:

hk[n] = (I − rkS)−1{δ}[n] = (rk)n u[n], k = 1, 2
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Mise en 
équation

Racines du 
polynôme 

caractéristique

Conditions 
initiales

Solution 
générale

Inverse de 
convolution

Réponse 
impulsionnelle

Réponse 
impulsionnelle

Equation aux différences: −0.2375 · g2[n − 2] − 0.7 · g2[n − 1] + g2[n] = 0.5 · f [n − 1]

b[n] = 0.5 · δ[n − 1]

23

La formule h[n] = (ainv ∗ b)[n] donne ici

h[n] = ainv[n] ∗ (0.5 · δ[n− 1])

=
(

95
240 (0.95)

n−1 + 25
240 (−0.25)n−1

)
u[n− 1]
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Mise en 
équation

Racines du 
polynôme 

caractéristique
Solution 
générale

Inverse de 
convolution

Réponse 
impulsionnelle

Conditions 
initiales

On suppose ici que l’élevage du zoologue était vide avant le temps n=0, ce qui 
impose que les coefficients de la solution de l’équation homogène sont tous 
nuls. 

24

Les conditions initiales servent à fixer les paramètres de la solution de l’équation

homogène:

N∑
k=1

Ck(rk)
n
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Mise en 
équation

Racines du 
polynôme 

caractéristique

Conditions 
initiales

Solution 
générale

Inverse de 
convolution

Réponse 
impulsionnelle

Solution 
générale

Solution générale = Solution particulière (+ Solution de l’équation homogène)

Ici on vient de voir que la solution de l’équation homogène est nulle.

Solution particulière: c’est la réponse impulsionnelle convoluée à l’entrée.

25

Jeunes:

Adultes: g2[n] = (h ∗ f)[n] =
∞∑
k=1

[(
95
240 (0.95)

k−1 + 25
240 (−0.25)k−1

)
· f [n− k]

]

g1[n] = 0.475 · δ[n− 1] ∗
g2[n]︷ ︸︸ ︷

h[n] ∗ f [n] +f [n]

= (h̃ ∗ f)[n] où h̃[n] = 0.475 · h[n− 1] + δ[n]
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Par exemple, la population totale à la période   
est donnée par

n

26

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

h[n]

g[n] = g1[n] + g2[n]

=
(
(h̃ + h) ∗ f

)
[n]

h̃[n] + h[n]
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Méthode de la transformée en z

27

La fonction de transfert d'un système défini par une équation aux différences est  
donc une fraction rationnelle. 

(a ∗ h)[n] = (b ∗ δ)[n] transformée en z−−−−−−−−−→ A(z) ·H(z) = B(z) · 1
�

H(z) =
B(z)

A(z)

On veut calculer la réponse h[n] à une impulsion δ[n] du système caractérisé par

l’équation aux différences (a ∗ g)[n] = (b ∗ f)[n].
Pour cela, on fait l’hypothèse que h[n] admet une transformée en z convergente
dans une couronne du plan complexe (par exemple, si on cherche une solution

causale, il s’agit d’une zone de la forme {z ∈ C : |z| > ρ+}). On a alors
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causal

ant
i-ca

usa
l
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…
r1

r2

r3

z ∈ C

1

1− rkz−1

transformée en z inverse−−−−−−−−−−−−−−−→
{
(rk)

n u[n] si ρ > |rk|
−(rk)

n u[−n − 1] si ρ < |rk|

Cette fonction de transfert est analytique partout, sauf sur les cercles {z ∈ C : |z| =
|rk|}. Donc, pour chaque couronne {z ∈ C : |rk| < |z| < |rk+1|}, il existe effective-

ment une réponse impulsionnelle dont la transformée en z converge vers H(z).

si les racines rk sont distinctes

et si deg(B(z−1)) < deg(A(z−1)).

Décomposition de H(z) en fractions simples

H(z) =
B(z)

a0

N∏
k=1

(1− rkz−1)

=

N∑
k=1

Ck

1− rkz−1

Lorsque ROC de H(z) contient le cercle de rayon ρ, on a (cf. table)

|z| = 1

On en déduit l’expression de la réponse impulsionnelle

h[n] =
∑

|rk|<ρ

Ck u[n](rk)
n−

∑
|rk′ |>ρ

Ck′ u[−n − 1](rk′)n

NB: La stabilité
(
c-à-d, h ∈ �1

)
n’est assurée que si on peut prendre ρ = 1. Donc, pour

que la réponse soit causale-stable, il faut que |rk| < 1 (pôles à l’intérieur du cercle unité).
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9.3 RÉALISATION

◼Systèmes LID réalisables

◼Stabilité

◼Causalité + stabilité

◼Paramètres d’implémentation

◼ Implémentations FIR et IIR

29
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Systèmes LID réalisables

Donc, un système LID est réalisable ssi son évolution est régie par une équation 
aux différences.

Implémentation du dénominateur sous forme récursive:

Remarque: dès que             n'est pas de la forme        (délai pur), la réponse 
impulsionnelle du système est nécessairement à support infini (RII).

Q(z−1) z−d

30

Un système LID est réalisable s’il peut s’implémenter à l’aide d’un nombre fini de

registres mémoire. On démontre que les systèmes LID réalisables se caractérisent

par une fonction de transfert rationnelle

H(z) =
B(z)
A(z)

= z−N0
P (z−1)
Q(z−1)

où P (x) et Q(x) sont des polynômes (donc de degré fini) premiers entre eux.

H(z) P (z−1)

1-Q(z-1)

= ⊕z−N0

f [n] g[n]
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Extrait du formulaire

31

Fonction de transfert rationnelle

H(z) = z−n0
B(z)

A(z)
= z−n0

b0 + b1z
−1 + · · ·+ bMz−M

1 + a1z−1 + a2z−2 + · · ·+ aNz−N
= z−n0b0

M∏
m=1

(1− z0,mz−1)

N∏
n=1

(1− zp,nz
−1)

Forme canonique avec n0 ∈ Z, b0, bM , aN ∈ C\{0} et telle que les polynômes(
zMB(z)

)
= b0z

M + b1z
M−1 + · · ·+ bM et

(
zNA(z)

)
= zN + a1z

N−1 + · · ·+ aN

de degrés M et N soient premiers entre eux.

Zéros (z0,m)Mm=1: racines de
(
zMB(z)

) ⇔ B(z0,m) = 0 (si z0,m �= 0)

Pôles (zp,n)
N
n=1: racines de

(
zNA(z)

) ⇔ A(zp,n) = 0 (si zp,n �= 0)

Système causal-stable ⇔ |zp,n| < 1, n = 1, . . . , N

9-Unser-Vandergheynst / Sig & Sys II

Pour qu'une fraction rationnelle          soit la fonction de transfert d'un 
système LID réalisable stable, il faut et il suffit que les pôles de  
ne soient pas sur le cercle unité.

Stabilité

x
x

x
x

stable

x
x

x
x

stable

x
x

x
x

instable

H(z)
H(z)

De toutes les réponses impulsionnelles qui correspondent à la même 
fonction de transfert, seule celle dont la région de convergence
inclut le cercle unité sera stable. 
Cette solution n’est en général pas causale.

Note: certains systèmes LID temporels réalisables peuvent être marginalement 
stables (sommateur glissant), voir instables …

32

cercle unité

Re(z)

Im(z) Im(z) Im(z)

Re(z) Re(z)
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Extrait du formulaire: Table de transformées en z
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f [n] F (z) ROC = zone de convergence

δ[n− n0] z−n0 C\{0} si n0 > 0, ou C si n0 ≤ 0

u[n] 1
1−z−1 {z ∈ C : |z| > 1}

sN+ [n] 1
(1−z−1)N+1 {z ∈ C : |z| > 1}

an u[n] 1
1−az−1 {z ∈ C : |z| > |a|}

−anu[−n− 1] 1
1−az−1 {z ∈ C : |z| < |a|}

ansN+ [n] 1
(1−az−1)N+1 {z ∈ C : |z| > |a|}

(−1)N+1ansN+ [−n−N − 1] 1
(1−az−1)N+1 {z ∈ C : |z| < |a|}
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Causalité + stabilité

∞x
x

x
x

causal et stable

x
x

x
x

causal non-stable/
non-causal et stable

x

x

x

non-causal et stable

La fraction rationnelle          est la fonction de transfert d'un système 
LID réalisable, stable et causal si et seulement si elle a tous ses 
pôles à l'intérieur du cercle unité.

H(z)

34

Im(z) Im(z) Im(z)

Les systèmes temporels réalisables sont nécessairement causaux—à la différence des

systèmes spatiaux. Cela implique que H(z) soit analytique pour |z| > ρ+. Si, en outre,

on impose la stabilité, il devient alors nécessaire que le cercle unité soit contenu dans le

domaine de convergence, d’où ρ+ < 1.
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Paramètres d’implémentation

Complexité ou coût de calcul: le nombre total d'additions, de multiplications, de 
divisions etc… nécessaires pour obtenir un échantillon.
 

Il était d'usage, par le passé, de considérer que les multiplications coûtaient beaucoup plus cher que 
les additions, mais sur un ordinateur moderne, il vaut mieux les considérer comme équivalentes.

Mémoire de stockage: selon l'application (microtechnique!), il peut être nécessaire 
de réduire au maximum les besoins de stockage. Par ailleurs, sur un ordinateur 
moderne, il est fréquent que les temps de calcul soient dominés par les temps 
d'accès à la mémoire.

Retard: le délai incompressible entre l'entrée et la sortie d'un système 
(indépendant du temps de calcul lui-même) est un paramètre important dans les 
applications de nature interactive (télécoms).

35
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Opérations de base: symboles graphiques

36

Retard x y y[n] = x[n− 1]

Multiplication x y

x1

x2

y y[n] = x1[n] + x2[n]

z−1

z−1

r0

a0
x y y[n] = a0 · x[n] + r0 · y[n− 1]

Addition

Exemple 

⇒ H(z) =
a0

1− r0z−1

a0
y[n] = a0 · x[n]
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Implémentation directe (filtre FIR)

… Forme I

H(z)

37

z−1 z−1 z−1z−n0

h[n0 + 1]h[n0] h[n1]h[n0 + 2]

f [n − k]

f [n]

⇔ g[n] =
n1∑

k=n0

h[k] × f [n − k]

Coût de calcul:                       additions et                       multiplications

Stockage:                       registres mémoire 

#retards: 

(n1 − n0 + 1) (n1 − n0 + 1)

2n1 − n0 + 1

n1 − n0

↔
{

f [n − 1], f [n − n0 − 1], . . . f [n − n1]
h[n0], h[n0 + 1], . . . h[n1]

…

Forme II

z−1 z−1 z−1 z−n0

h[n1] h[n1 − 1] h[n1 − 2] h[n0]

h[n1] × f [n]

f [n]

h[n1] × f [n − 1] + h[n1 − 1] × f [n]

⇔ g[n] =
n−n0∑

k=n−n1

h[n−k] × f [k]
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Implémentation en treillis
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H(z) ⇔

[
Gi+1(z)

Ui+1(z)

]
=

[
1 Kiz

−1

Ki z−1

]
·
[
Gi(z)

Ui(z)

]

K1

z−1
K2

z−1 z−1

· · ·
K2 KN

KN
K1

gN

uN
uN−1

gN−1

Les coefficients K1,K2, . . . ,KN sont appelés coefficients de réflexion. Ce type de

structure est très utilisé en traitement et codage de parole (filtres adaptatifs etc.). gN

est alors appelé erreur de prédiction progressive (“forward”) et uN erreur de prédiction

rétrograde (“backward”).

Remarque: le filtre H(z) a ses racines dans le disque unité si et seulement si |Ki| < 1

(test de Schür-Cohn). Ce qui assure en particulier la stabilité du filtre inverse 1/H(z)

(codage linéaire de la parole "LPC", synthèse de la parole).
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Implémentation directe (filtre IIR)
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Implémentation récursive non canonique

forme “dénominateur–numérateur”

...
...

z−1

z−1

z−1 z−1

z−1

z−1

p[0]

p[1]

p[2]

p[M ]−q[M ]

−q[2]

−q[1]z−1

forme “numérateur–dénominateur”

...
...

z−1

z−1 z−1

z−1

z−1

⇔H(z)
p[0]

p[1]

p[M ]

p[2]

−q[M ]

−q[2]

−q[1]

P (z−1)1
Q(z−1)

On se donne H(z) =
P (z−1)
Q(z−1)

avec q[0] = 1, deg(P ) = M et deg(Q) = N .

y[n] =
M∑

m=0

p[m]x[n−m] −
N∑

k=1

q[k] y[n− k]
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Implémentation canonique
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Pour simplifier, on suppose N = M .

Avantages:

#retards=M au lieu de 2M

(nombre minimal de délais);

stockage réduit de M .

fo
rm

e 
I 

“d
én

om
in

at
eu

r–
nu

m
ér

at
eu

r”

⇔

−q[M ]

p[0]

p[1]

p[2]

p[M ]

−q[1]

−q[2]

z−1

z−1

z−1

...

p[1]

p[0]

p[M ]−q[M ]

−q[2]
...

...

z−1z−1

z−1 z−1

z−1 z−1

p[2]

fo
rm

e 
II 

“n
um

ér
at

eu
r–

dé
no

m
in

at
eu

r”

⇔

z−1

z−1

z−1

p[0]

p[1]

p[2]

p[M ]

−q[1]

−q[2]...

−q[M ]

p[0]

p[1]

p[M ]

−q[2]

−q[M ]

...
...

z−1z−1

z−1 z−1

z−1z−1

p[2]

−q[1]
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Implémentation parallèle

...

41

Hypothèse simplificatrice: deg(P ) < deg(Q) et H(z) n’a pas de pôle multiple.

H(z) =

z−1

z−1

z−1

A1

A2

AN

r1

r2

rN

Décomposition de H(z) =
P (z−1)
Q(z−1)

en fractions simples:

H(z) =
N∑

k=1

Ak

1 − rkz−1


