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9.1 FONCTION DE TRANSFERT D’UN SYSTEME LID

= Représentation graphique

= Plles et zéros

= Support de la réponse impulsionnelle
= Causalité et stabilité

= Filtres réels
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Représentation graphique

Un systéme LID agit a travers une convolution avec sa réponse impulsionnelle h[n], donc par une
multiplication dans le domain de la transformée en z.

H(z) =) h[n]z"" est appelée fonction de transfert du systéme.
nez

n] = (h* £)ln]
fln] ’

H(z) ——

Exemple: opérateur de décalage or retard ("Shift") S : f — f[- — 1]

fln] 7 fln—1]
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Poles et zéros

Soit une fonction de transfert H(z). On dit que le nombre complexe z; est

= unzérode H(z)is H(z) =0

= un polede H(z) is

Plus généralement:

n

H
(z0) = 0 pourtoutn =0,1,...(N —1)

dzm

= 2o est un zéro multiple d’ordre N is

d"(1/H)

= 2o est un pole multiple d’ordre N is
dzm

(z0) = 0 pourtoutn =0,1,...(N —1)

Exemple

SiH(z)= 22‘2 ol A(z) et B(z) sont des polyndmes premiers entre eux, alors

= les zéros de H(z) sont ceux de A(z)

= les pdles de H(z) sont les zéros de B(z)

Unser-Vandergheynst / Sig & Sys Il

Support de la reponse impulsionnelle

Un systeme LID est a réponse impulsionnelle finie (RIF) ssi il existe ny € 7Z
tel que

H(z) = 27" P(z~1) ot P(x) est un polynéme (de degré fini)

ni ni1—no
Eneffet: H(z) = Z hln]z=" = z7"° Z h[m]z™ avec x = 2!
n=no m=0
P(x)

Avantage: implémentation a I'aide d'un nombre fini de décalages
—systeme réalisable.

Dans tous les autres cas, le systeme LID est a réponse impulsionnelle infinie
(RIN). En pratique, dés que H(z)a des péles ou des régions de discontinuité,
alors le systeme LID est nécessairement RIll.

Unser-Vandergheynst / Sig & Sys Il
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Causalité et stabilité

1

o0
Systeme LID causal < H(z)= Z h[n]z~": série entiere en puissances de z~
n=0

o0
& H(z )= Z hln]z": série entiére en puissances de z (Taylor)
n=0

Pour qu’une telle série soit bien défini, il suffit qu’il existe p tel que H(z)
soit analytique (c-a-d uniformément convergent) dans {z € C : |z| > p}
et incluant |z| = oo.

H(z) analytique dans une couronne contenant le cercle unit¢ = h € (1(Z).

Ainsi, causalité + (p < 1) impliquent stabilité (BIBO et de composition).

Exemple: H(z) = —

est la transformée en z d’'un systéme LID causal car

H(z) est analytique pour ROC = {|z| > 1} incluant |z| = oo; elle est également
stable puisque p < 1.

Unser-Vandergheynst / Sig & Sys Il 9-7

Filtres réels

Un filtre dont la réponse impulsionnelle est réelle vérifie la propriété de conjugaison:

Vz € C, H(z)" = Z h*[n](z7")* = H(z")

nez 2" = |z = (27)* = ()"
En conséquence

= Si 2o est un zéro de H(z) alors 2 est aussi un zéro de H(z)

= si z;, est un péle de H(z) alors z;; est aussi un péle de H (z)

En particulier, les pdles et zéros non réels de H (z) sont en nombre pair, positionnés
symétriquement par rapport a I'axe réel.

Imypole Im(z) Im(z)
X Re(z X Re(z) N )\ X Re(z
X X ) X
zéro K
2€C 2eC 2€C
filtre réel filtre complexe filtre réel
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9.2 EQUATIONS AUX DIFFERENCES

= Des dérivées aux différences
= Rappel sur les opérateurs
= Résolution en appliquant 'opérateur inverse

= Méthode de la transformée en z

Des dérivées aux différences

A l'aide d’approximations en puissances de 7' (pas d’échantillonnage)

(0(t) =a(t = T)) «f(t) = f(t) — f(t = T)

A g
-~

systeme discret

=7 Df(1) - LD (1) + -

on montre que les systemes LIT différentiels peuvent se transposer
en systemes LID aux différences sous la forme

fln] — LID —— g[n]

ang[ln — Nl +an—1g[n — N + 1]+ --- 4+ aog[n] = by f[n — M| +--- + by f[n]

Ou encore, sous forme convolutive

a[n] = g: apd[n — k|
(axg)[n] = (bx f)[n] avec k=0

bln| = éj:o brd[n — k

Unser-Vandergheynst / Sig & Sys Il
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Rappel sur les opérateurs

m Equivalence opérateur LID / réponse impulsionnelle A[-]

Sp =) h[k]S* —  H(z)=3 hk]z"

keZ keZ

m Inverse de convolution BIBO stable

Il existe hiny € £1(Z) (unique) t.9. (hiny * h)[n] = d[n]
& S =Sh.  leo(Z) = loo(Z)

Sl f e S i KFL — K] s Hi() = Hb = 3 D[R]

Unser-Vandergheynst / Sig & Sys Il

Préparation: inverse du 1er ordre

Opérateur: Sp, = (I —roS) avec rye C,|ro| <1

Réponse impulsionnelle:  hg[-] = 6[-] — rod[- — 1]
——  Hy(z)=1—rgz?

m Inverse de convolution

-~ o ITT?99=

h07inv [n] - (TO)n u[n]

Vérification:  (hoinv * (8]-] — 708[- — 1]))[n] = (ro)™ u[n] — ro(ro)"* u[n — 1] = é[n]

Critere de stabilité: (r9)" u[n] € (1(Z) < |ro| <1
(exponentielle causale décroissante)

oo

(T=roS) ™" f Y (ro)* [ — ] — T :Oz_l = (ro)*z7"
k=0

k=0

Unser-Vandergheynst / Sig & Sys Il



Résolution des équations aux difféerences

Unser-Vandergheynst / Sig & Sys Il

Probléme: étant donnés les échantillons d’entrée f[n], trouver les échantillons de
sortie g[n] qui satisfont 'équation aux différences

(axg)n] = (bx f)ln] < Sa{g} =Self}

Solution: g[n] est la somme d’une solution particuliére et d’'une solution (dite “ho-
mogéne”) pour une entrée nulle
9 = Yparticuliere + Jhomogéne = S;l{b * f} + Ghomogene

Trois étapes

1. Déterminer la réponse impulsionnnelle de I'opérateur inverse S;l s f > Gy * f

2. Déterminer la solution particuliere a S,{g}[n| = (b* f)[n]:
Gparticuliére [n] = Sgl{b * f}[n] = (ainv * b x f)[n]

3. Déterminer les solutions homogeénes (a * ghomogene)[1] = 0

Ghomogene € Ker(Sq) = {g[-] : Sa{g} = 0}: noyau de S, avec Ker(S,) N ¢ (Z) = {0}

Hypothéses: S, est injectif sur £, (Z) et, donc, inversible; S, est BIBO stable et f € (o (Z).

Unser-Vandergheynst / Sig & Sys Il 9-13
Détermination de I’opérateur inverse
N
Soit Sq = Y a[k]S*: f—axf.
k=0
On souhaite trouver ainy € ¢1(Z) t.q. (Giny * a)[n] = §[n]
qui définit 'opérateur inverse: Sol=Sa. :fr>am*f
m Factorisation du polynéme caractéristique
N N N
A(z) = alklz™F =2z"Na[0] [[(z =) = al0] [](1 = rkz™")
k=0 k=1 k=1
r1,T2,...,TN : racines de A(z)
<~ Sa:a[O](I—Tls)(I—TQS)'-'(I—TNS)
m Forme factorisée de l'inverse de convolution
1
S;t=—T—rnS)t---(I—r8) "I —rS) !
a CL[O] ( N ) ( T2 ) ( 1 )
Condition de stabilité¢ BIBO: r;, € C,|ry| #1, (k=1,---,N)
9-14



Calcul de la solution particuliere

m Réponse impulsionnelle de I'inverse de convolution
1

ainy[n] = S5 {6}[n] = a0l (I=rnS) ™ - (I=reS) (I = riS) " {d}[n]
1
= m(h]\r*---*hz*hl)[n]

ot hg[n] = ([T —rS)~Hé}n] = (re)"uln] silr,] <1

N

1 1 1
Ainv(2) = A(z) - al0] kEIl 1—rpz—1

m Calcul final de la réponse particuliegre:  g[n] = S, {bx f}[n] = (h* f)[n]
Réponse impulsionnelle globale:  h[n] = (ainy * 0)[n] = r (A * -+ ha * hi + b)[n]
I
CB(2) 1 (& 1
HE) =36 = ] (H 1—> e

k=1

Unser-Vandergheynst / Sig & Sys Il

Solutions homogenes (pour une entrée nulle)
On souhaite trouver les signaux discrets go[n| vérifiant, pour tout n entier
apgoln] +a1goln — 1]+ -+ +angoln — N] =0

Il s'agit d'une équation de récurrence d'ordre N dontles N solutions sont des
exponentielles (éventuellement multipliées par des polynémes).

De fagon générale, si I'on construit et factorise le polynéme caracteristique

A(Z) :a0+alz*1_|_..._'_aNZ*N:Z*N(aozN_f_alszl_}_.“_}_aN)

= aO(l - le_l) (1 - Tzz_l) A TNZ_l) r1,72,...,7N : racines de A(z)

alors la solution générale de I'’équation homogene est donnée par

go[n] = C1(r1)™ + Co(ra)" + -+ -+ Cn(ry)™ avec C1,...,Cn € R (constantes)

Remarque: si les racines sont multiples, alors la solution générale prend la forme
go[n] = Q1(n) - (r)" + Q2(n) - (r2)" + -+~ Qa(n) - (ra)"

d = nombre de racines distinctes

mi, Mo, ..., mg = multiplicité de la racine r1,73,...,74

Q1(z),Q2(x) ... Qq(x) = polyndbmes de degré m; — 1,ms — 1,..., mg — 1

Unser-Vandergheynst / Sig & Sys Il



Vérification: Supposons que 7, € C soit racine de A(z) = Z amz" ",

A(rg) = 0,dou (rg)" A(rr) = 0 pour tout n et on a

N
0= ('r'k:)nA 'f'k) ’f’k)n Z A, Tk — Z am(rk)n—m

= (axgo)ln] o go[n] = (rg)"

HIlf,....:

Cette relation est vraie pour toutes les racines de A(z) et, par linéarité, pour toute com-
binaison linéaire des racines de A(z)

m Remarques
= Le polyndme caractéristique A(z) est la transformée en z de la séquence a[n].
= La déterminations des constantes (1, ..., C'y requiert N conditions initiales.

= Hypothése de stabilité sous-jacente:  |ri| # 1,Vk < ghomogene ¢ Yoo (Z)

Unser-Vandergheynst / Sig & Sys Il

Résolution d’une équation aux différences

rty...»TN Qiny h
. Racines du Réponse
Miseen || A || Inversede || . .
équation polynéme convolution impulsionnelle
9 caractéristique globale .
Solution
A(z) 1 / générale
i Conditions i
A(2) ! initiales i
N M
> alklgoucln — k) = 7 blmlfuln —m] & (ax gow)n] = (b* fin) ]
k=0 m=0
Solution générale:  gout[n] = (h * fin)[n] +  Ghomogene|n]

ol h[n] = (ainy *b)[n] et (a* ghomogene)[] =0

Unser-Vandergheynst / Sig & Sys Il



Exemple d’application

Un zoologue éleve une espéce animale rare pour étudier son comportement social.

A la période n, son élevage est constitué de jeunes en nombre ¢; [n], incapables de
se reproduire, ainsi que d’adultes en nombre g»[n]. Les jeunes atteignent la puberté
au bout d’une période. Par ailleurs, ce zoologue régule son élevage en y apportant
(ou en y enlevant) des nouveau-nés en nombre f[n].

Les jeunes ont un taux de mortalité assez élevé: 50%. Les vieux résistent un peu
mieux: 30% de taux de mortalité sur une période. Enfin, les adultes se reproduisent
au taux de 47.5% sur une période.

Unser-Vandergheynst / Sig & Sys Il

Mise en Racines du Inverse de Réponse
) . polynéme N ) i :
équation caractéristique convolution impulsionnelle
Solution
générale
Conditions
initiales

4
Jeunes —_ | 91 [n] = 0.475 - g2 [” - 1] + f[”]
. - -~ N~

reproduction des adultes  apport du zoologue

4
Adulies ——— g2[n] =(1-0.3) - g2[n — 1]+ (1 = 0.5) - g1[n — 1l

A

\ “survivants” de la période n—1

En remplacant la premiere équation dans la seconde on obtient

—0.2375 - ga[n — 2] = 0.7 - ga[n — 1] + g2[n] = 0.5 f[n — 1]

Il s'agit d'une équation aux différences dont l'entrée est f[n|et la sortie g [n|.

Unser-Vandergheynst / Sig & Sys Il
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Mise en Inverse de | | Réponse
équation convolution impulsionnelle
Solution
générale
Conditions
initiales

Equation aux différences: —0.2375 - ga[n — 2] — 0.7 - ga[n — 1] + g2[n] = 0.5 - f[n — 1]

Polynéme caractéristique: A(z) = —0.2375-272 - 0.7- 271 +1

Racines de A(z) : {r1,7m2} = {0.95,—0.25}

Unser-Vandergheynst / Sig & Sys Il 9-21

. Racines du ;

Mise en R Réponse

. . N polynébme ] .

équation . impulsionnelle

caractéristique :
Solution
générale
Conditions
initiales

Racines du polynéme caractéristique: r; = 0.95 et ro = —0.25

Factorisation: S, = (I — r1S)(I — r2S)

Réponses impulsionnelles intermédiaires:
hi[n] = 1= reS)~H{d}n] = ()" uln], k=1,2
ainy[n] = (h1 * ha)[n]

_ (mr_lm (r)" — 2 (1"2)") uln] = (25:(0.95)" + 25(—0.25)") uln]

Unser-Vandergheynst / Sig & Sys Il 9-22



. Racines du
Mise en A Inverse de
i . N polynéme N )
équation e convolution
caractéristique .
Solution

| générale

Conditions
initiales

Equation aux différences: —0.2375 - go[n — 2] — 0.7 - g2[n — 1] + ga[n] = 0.5 - f[n — 1]

La formule h[n] = (aiy * b)[n] donne ici

h[n] = ainy[n] * (0.5 - d[n — 1])
= (25(0.95)" 7" + 25(-0.25)""") u[n — 1]

Unser-Vandergheynst / Sig & Sys Il 9-23
. Racines du i

Mise en R Inverse de Réponse

i . N polynéme N . . .

équation o convolution impulsionnelle

caractéristique .

Solution
générale

Les conditions initiales servent a fixer les parametres de la solution de I'équation
homogeéne:

WE

Cr(rx)"
k=1

On suppose ici que I'élevage du zoologue était vide avant le temps n=0, ce qui
impose que les coefficients de la solution de I’équation homogene sont tous
nuls.

Unser-Vandergheynst / Sig & Sys Il 9-24



. Racines du .
Mise en R Inverse de Réponse
! . N polynéme N . -l :
équation o convolution impulsionnelle
caractéristique
i Conditions
i initiales

Solution générale = Solution particuliére (+ Solution de I'’équation homogeéne)
Ici on vient de voir que la solution de I'’équation homogéne est nulle.

Solution particuliére: c’est la réponse impulsionnelle convoluée a I'entrée.

Adultes:  g2[n| =

0= 3 [(0991 + 25-025") ]

k=1
92[n]
Jeunes: g1[n] = 0.475 - §[n — 1] * h[n] * f[n] +f[n]

= (h* f)[n]  ouhln] =0.475- h[n — 1] + 8[n]

Unser-Vandergheynst / Sig & Sys Il 9-25

1t
Par exemple, la population totale a |la période n 0sl
est donnée par ' _
0.6 hn] + hln]

gln] = g1[n] + ga[n] >4 '

L Iy
0

0 5 10 15 20

Unser-Vandergheynst / Sig & Sys Il 9-26



Méthode de la transformée en z

On veut calculer la réponse h|n| a une impulsion 6[n| du systéme caractérisé par
I'équation aux différences (a * g)[n] = (b* f)[n].

Pour cela, on fait 'hypothése que h[n] admet une transformée en z convergente
dans une couronne du plan complexe (par exemple, si on cherche une solution
causale, il s’agit d’'une zone de la forme {z € C : |z| > p4}). On a alors

(a*h)[n] = (b* 8)[n] T2mRmeeeN2 Ay H(2) = B(z) - 1

La fonction de transfert d'un systeme défini par une équation aux différences est
donc une fraction rationnelle.

Unser-Vandergheynst / Sig & Sys Il 9-27

m Décomposition de H (z) en fractions simples

N . . .
B(z) Z si les racines r sont distinctes

ap l]y[ (1 —rkz—t) k=1 1 —mz=! et si deg(B(z_l)) < deg(A(z—l))_
k=1

H(z) =

Cette fonction de transfert est analytique partout, sauf sur les cercles {z € C : |z| =
|7k|}. Donc, pour chaque couronne {z € C : |ri| < |z] < |rg+1]}, il existe effective-
ment une réponse impulsionnelle dont la transformée en z converge vers H(z).

Lorsque ROC de H (z) contient le cercle de rayon p, on a (cf. table)

9,
/ ‘/8‘6/
1 transformée en z inverse (Tk)n U[?’L] sip> |7’k|
1—rpz—t —(rg)"u[—n —1] sip < |rgl
S
"0@\)9
o

On en déduit I'expression de la réponse impulsionnelle

hinl= > Cruln)(re)"— Y Cr ul—n—1](ri)"

|re|<p |7 |>p

NB: La stabilité (c-é-d, h € 61) n’est assurée que si on peut prendre p = 1. Donc, pour
que la réponse soit causale-stable, il faut que |rx| < 1 (pbles a 'intérieur du cercle unité).

Unser-Vandergheynst / Sig & Sys Il 9-28



9.3 REALISATION

= Systemes LID réalisables

= Stabilité

= Causalité + stabilité

= Parametres d’'implémentation

= Implémentations FIR et IR

9-29

Systemes LID realisables

Un systéme LID est réalisable s’il peut s’implémenter a I'aide d’'un nombre fini de
registres mémoire. On démontre que les systemes LID réalisables se caractérisent
par une fonction de transfert rationnelle

B(z) _ P

A(z) Q(z71)

ou P(z) et Q(x) sont des polynémes (donc de degré fini) premiers entre eux.

H(z) =

Donc, un systeme LID est réalisable ssi son évolution est régie par une équation
aux différences.

Implémentation du dénominateur sous forme récursive:

fln] gln]

HE)f—

—| z7No P(,z_l) —

L 1-Q(z)

Remarque: dés que Q(z~!)n'est pas de la forme z~¢(délai pur), la réponse
impulsionnelle du systeme est nécessairement a support infini (RIl).

L]
v
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Extrait du formulaire

m Fonction de transfert rationnelle
M

H (1-— zo,mz_l)

B(Z) _ ,—no bo—|—b12_1 ++bMZ_M :Z—nObomzl
A(z) l+aiz7t+asz724 - +anzV N

H (1- Zp,nz_l)

n=1

H(z)=z""°

= Forme canonique avec ny € Z, by, byr,an € C\{0} et telle que les polynémes
(zMB(z)) — bon _|_b12M—1 4 4Dy et (zNA(z)) — N + alzN—l + . tay
de degrés M et N soient premiers entre eux.

= Zéros (z0,,)M_,: racines de (:MB(2)) <  B(zom) =0 (siz0m # 0)
= Poles (z,,))_: racines de (2N A(z)) &  A(zpn) =0  (sizpn #0)

Systéme causal-stable < |z,,/ <1, n=1,...,N

Unser-Vandergheynst / Sig & Sys Il 9-31

Stabiliteé

Pour qu'une fraction rationnelle H (z) soit la fonction de transfert d'un
systéme LID réalisable stable, il faut et il suffit que les péles de H(z)
ne soient pas sur le cercle unite.

A A

Im(z) Im(2) 1 Im(z)

X X X

X X

X Re(z) X Re(z) Re(z)
X X X

cercle unité
stable stable instable

De toutes les réponses impulsionnelles qui correspondent a la méme
fonction de transfert, seule celle dont la région de convergence
inclut le cercle unité sera stable.

Cette solution n’est en général pas causale.

iy

Note: certains systémes LID temporels réalisables peuvent étre marginalement
stables (sommateur glissant), voir instables ...

Unser-Vandergheynst / Sig & Sys Il 9-32



Extrait du formulaire: Table de transformées en z

fn] F(z) ROC = zone de convergence
d[n — no] z~"mo C\{0} sing >0, ouCsing <0
uln] — {zeC:|z| > 1}
s¥n) (1—z—11)N+1 {zeC:|z]| > 1}
a™ uln] — {z€C:|z| > |a|}

a" sl [n] A=az=T)~T

(D" ams[-n =N —1] g ovr

{zeC:|z] <]al}
{z€C:|z] > |a|}

{z€C:|z] <]al}

Unser-Vandergheynst / Sig & Sys Il

Causalité + stabilité

8-33

Les systémes temporels réalisables sont nécessairement causaux—a la différence des

systémes spatiaux. Cela implique que H (z) soit analytique pour |z| > p. Si, en outre,
on impose la stabilité, il devient alors nécessaire que le cercle unité soit contenu dans le

domaine de convergence, d'ou p4 < 1.

péles a l'intérieur du cercle unite.

La fraction rationnelle H(z) est la fonction de transfert d'un systéme
LID réalisable, stable et causal si et seulement si elle a tous ses

A

-
A\

causal non-stable/
non-causal et stable

causal et stable

Unser-Vandergheynst / Sig & Sys Il

~
N

non-causal et stable
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Parametres d’implémentation

Complexite ou colt de calcul: le nombre total d'additions, de multiplications, de
divisions etc... nécessaires pour obtenir un échantillon.

Il était d'usage, par le passé€, de considérer que les multiplications co(taient beaucoup plus cher que
les additions, mais sur un ordinateur moderne, il vaut mieux les considérer comme équivalentes.

Mémoire de stockage: selon I'application (microtechnique!), il peut étre nécessaire
de réduire au maximum les besoins de stockage. Par ailleurs, sur un ordinateur
moderne, il est fréquent que les temps de calcul soient dominés par les temps
d'accés a la mémoire.

Retard: le délai incompressible entre l'entrée et la sortie d'un systeme
(indépendant du temps de calcul lui-méme) est un parameétre important dans les
applications de nature interactive (télécoms).

Unser-Vandergheynst / Sig & Sys Il 9-35

Opérations de base: symboles graphiques

Retard T — Py yln] = x[n — 1]

Multiplication — «—@— v yln] = ao - 2]

Addition T)——g——>Y yln] = x1[n] + x2[n]

T2
Exemple
x > Y y[n] = ag - z[n] + 1o - y[n — 1]
_ !
= H(z)= —

Unser-Vandergheynst / Sig & Sys Il 9-36



Implémentation directe (filtre FIR)

fln — K]

n _,|2an —1 \[ Forme l

hlnol X9 ng + 119 hlno + 2 h[m] . Z h >< f n—=k
- k=ngo
—H(2) [~
Forme Il

h[nl hlny —1] hlny -2 noé n—mno

_ & gl= Y hln-k xS
hlna] x fln
h[nl} X fln — 1] + h[ny — 1] x f[n]

Cout de calcul: (n1 — ng + 1) additions et (n; — ng + 1) multiplications

Stockage: 2n; — ng + 1 registres mémoire
9¢: Ao A Ted fln =1, fln —no — 1], fln — na]
h[’)’bo], h[no + 1], ce h[’)’Ll]

#retards: n1 — no
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Implémentation en treillis

Les coefficients K1, Ko, ..., Kn sont appelés coefficients de réflexion. Ce type de
structure est tres utilisé en traitement et codage de parole (filires adaptatifs etc.). gn
est alors appelé erreur de prédiction progressive (“forward”) et u erreur de prédiction

rétrograde (“backward”).

Remarque: le filtre H(z) a ses racines dans le disque unité si et seulement si |K;| < 1
(test de Schiir-Cohn). Ce qui assure en particulier la stabilité du filtre inverse 1/H (z)
(codage linéaire de la parole "LPC", synthése de la parole).
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Implémentation directe (filtre lIR)

m Implémentation récursive non canonique

Onsedonne H(z) = % avec ¢|0] = 1,deg(P) = M et deg(Q) = N.
yln] =Y plmlzfn —m] = qlk]y[n — k]
m=0 k=1

forme “numérateur—dénominateur” forme “dénominateur—numérateur”
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forme |
“dénominateur—numérateur”

forme Il
“numérateur—dénominateur”

Implémentation canonique

Pour simplifier, on suppose N = M.

>
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&
Avantages:
#retards=M au lieu de 2M
(nombre minimal de délais);
stockage réduit de M.

&

9-40



Implémentation parallele

P(z7h)

Décomposition de H(z) = en fractions simples:

Q) o
H(z) = Z Tk

1 —rpz—1
k=1 k

Hypothése simplificatrice: deg(P) < deg(Q) et H(z) n’a pas de pole multiple.
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